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Abstract

When automated trading strategies are developed and evaluated using backtests on historical 

pricing data, there exists a tendency to overfit to the past. Using a unique dataset of 888 algorithmic 

trading strategies developed and backtested on the Quantopian platform with at least 6 months of 

out-of-sample performance, we study the prevalence and impact of backtest overfitting. Specifically, 

we find that commonly reported backtest evaluation metrics like the Sharpe ratio offer little value in 

predicting out of sample performance (R² < 0.025). In contrast, higher order moments, like volatility and

maximum drawdown, as well as portfolio construction features, like hedging, show significant 

predictive value of relevance to quantitative finance practitioners. Moreover, in line with prior 

theoretical considerations, we find empirical evidence of overfitting – the more backtesting a quant 

has done for a strategy, the larger the discrepancy between backtest and out-of-sample 

performance. Finally, we show that by training non-linear machine learning classifiers on a variety of 

features that describe backtest behavior, out-of-sample performance can be predicted at a much 

higher accuracy (R² = 0.17) on hold-out data compared to using linear, univariate features. A portfolio

constructed on predictions on hold-out data performed significantly better out-of-sample than one 

constructed from algorithms with the highest backtest Sharpe ratios.

Introduction

When developing automated trading strategies, it is common practice to test algorithms on historical 

data, a procedure known as backtesting. Backtest results are often used as a proxy for the expected

future performance of a strategy. Thus, in an effort to optimize expected out-of-sample (OOS) 

performance, quants often spend considerable time tuning algorithm parameters to produce optimal 

backtest performance on in-sample (IS) data. Several authors have pointed out how this practice of 

backtest "overfitting" can lead to strategies that leverage to specific noise patterns in the historical 

data rather than the signal that was meant to be exploited (Lopez de Prado [2013], Bailey et al. 

[2014a]; Bailey et al. [2014b]). When deployed into out-of-sample trading, the expected returns of 

overfit strategies have been hypothesized to be random at best and consistently negative at worst. 

The question of how predictive a backtest is of future performance is as critical as it is ubiquitous to 

quantitative asset managers who often, at least partly, rely on backtest performance in their hiring 
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and allocation decisions. In order to quantify backtest and out-of-sample performance, a large 

number of performance metrics have been proposed. While the Sharpe ratio (Sharpe [1966]) is the 

most widely known, it is probably also the most widely criticized (Spurgin [2001], Lin, Chou [2003]; Lo 

[2009]; Bailey, Lopez de Prado [2014]) . A large number of supposedly improved metrics, such as the 

information ratio or Calmar ratio (Young [1991]), have been proposed, but it is unclear what 

predictive value each metric carries.

Backtest overfitting also appears to be a problem in the academic literature on quantitative finance 

where trading strategies with impressive backtest performance are frequently published which do not

seem to match their OOS performance (for studies on overfitting see e.g. Schorfheide and Wolpin 

[2012]; McClean and Pontiff [2012]; Lopez de Prado [2013]; Bailey [2014a]; Bailey [2014b]; Beaudan

[2013]; Burns [2006]; Harvey et al. [2014]; Harvey, Liu, & Zhu [2016]). A recent simulation study by 

Bailey et al. [2013] demonstrates how easy it is to achieve stellar backtest performance on a 

strategy that in reality has no edge in the market. Specifically, the authors simulate return paths with 

an expected Sharpe Ratio of 0 and derive probabilities to achieve Sharpe Ratios well above 1 after 

trying a few strategy variations under a limited backtest time-frame. When no compensatory effects 

are present in the market, selecting such a strategy based on in-sample Sharpe Ratio will lead to a 

disappointing out-of-sample Sharpe Ratio of 0. However, when assuming such compensatory 

market forces like overcrowded investment opportunities to be at play, selecting strategies with high 

in-sample Sharpe ratio would even lead to negative out-of-sample Sharpe ratio. As these results are 

purely theoretical, it is not clear which of these two relationships – zero or negative correlation – 

between IS and OOS performance exist in reality.

In this study, we aim to provide an empirical answer to the relationship between the IS and OOS 

performance based on data set and compare various performance metrics that have been proposed 

in the literature. Towards this goal, we have assembled a data set of 888 unique US equities trading 

algorithms developed on the Quantopian platform and backtested from 2010 through 2015 with at 

least 6 to 12 months of true OOS performance. Quantopian provides a web-based platform to 

research, develop, backtest and deploy trading algorithms. To date, users of the platform have run 

over 800,000 backtests. While the site terms-of-use strictly prohibit direct investigation of algorithm 

source code, we are granted access to detailed data exhaust, returns, positions, and transactions an

algorithm generates when backtested over arbitrary date ranges. As the encrypted algorithm code is 

time-stamped in our database, we can easily determine exactly what historical market data the 

author had access to during development. We call this time prior to algorithm deployment the in-

sample period. The simulated performance accumulated since an algorithm's deployment date 

represents true out-of-sample data.

As we will show below, backtest performance of single metrics have very weak correlations with their

out-of-sample equivalent (with some exceptions). This result by itself might lead to the conclusion 

that backtests carry very little predictive information about future performance. However, by applying 

machine learning algorithms on a variety of features designed to describe algorithm behavior we 

show that OOS performance can indeed be predicted.
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Methods

Data set

Our initial sample consists of 7152 algorithms developed and backtested on the Quantopian platform

(https://www.quantopian.com). The algorithms in our sample represent a wide range of strategy 

styles (technical, fundamental, mean-reversion, momentum, etc.), trading frequencies (buy-and-

hold/intraday), portfolio sizes (1 - 500 stocks), and portfolio structures (long-only/short-only/dollar-

neutral). This heterogeneity adds valuable variance to our IS/OOS feature dataset. We applied 

several filtering steps to remove duplicates, outliers, and algorithms that likely do not represent 

meaningful attempts at a profitable strategy. Specifically, we removed strategies that only trade a 

single stock, or had a Sharpe ratio less than -1.0, or were backtested over less than 500 days in 

total, or were not invested in the market on at least 80% of trading days. We also removed outlier 

strategies where a feature (see below for information on how features are computed) deviated more 

than 4 standard deviations from its population mean. Finally, we had to remove duplicate strategies 

which are frequent because of a “cloning” feature on Quantopian that allows quants to copy a 

strategy that was shared on the community forums. To filter these clones, we removed algorithms 

that traded the exact same number of trading days, maximum, median and minimum stocks or were 

correlated more 0.95 with strategies already in our sample. Ultimately, these preprocessing steps 

removed a large part of our initial data set and left us with 888 algorithms. We experimented with 

various preprocessing parameters and filters and decided on these as they remove many non-

representative or duplicate strategies but still leave us with enough data to perform meaningful 

analyses. Results reported below overall were robust to specific preprocessing choices.

Each algorithm in our sample pool was backtested from 2010 through the end of 2015 using the 

open-source Zipline trading simulator (https://zipline.io). Zipline simulates split-adjustment, 

transaction costs, order delays, liquidity constraints, as well as market impact and slippage. For all 

simulations, minute-bars trade level pricing data were used. Since all the algorithms in our sample 

were written between January and June in 2015, each backtest contains a minimum of 6 months of 

OOS performance data. It is important to emphasize that all algorithm code is versioned in a point-

in-time database at time of creation, the algorithm's logic could not have been updated or adjusted at

any point during this OOS period. From these backtests, we utilize simulated transactions, end-of-

day positions, and daily returns to compute risk metrics and features. We also compiled platform 

usage data on the total number of backtest days each algorithm was tested over by its author prior 

to deployment. Our hypothesis is that this backtesting activity metadata will capture the impact of 

strategy development technique on OOS performance. 

The main analyses below are carried out using frequentist linear regression methods. To gain more 

confidence into our results we have also performed Bayesian linear regressions which resulted in 

similar results but are omitted due to the widespread familiarity with frequentist statistics.

Feature extraction

https://www.quantopian.com/
https://zipline.io/


As the raw returns, positions, and transactions data that constitute a backtest are often difficult to 

compare across algorithms, the extraction of universally applicable features is a critical step in any 

cross-sectional comparison of strategy performance. We constructed features based on point 

estimates of several well-known performance and risk metrics such as the Sharpe ratio, information 

ratio, Calmar ratio, alpha, beta, maximum drawdown, as well as annual returns and volatility. In 

addition, we included as features metrics that track algorithm behavior based on returns (including 

skew, kurtosis, standard deviation of rolling beta with a 6-month window), positions (including 

median and maximum position concentration, total number of tickers traded), and transactions 

(including average % daily turnover, percent of winning trades). In an effort to capture the influence 

of strategy development technique and potential overfitting, we have also included a feature for the 

total number of backtest days each algorithm was tested over prior to deployment. 

As risk metrics are not necessarily stable over the course of an algorithm's full backtest, we attempt 

to capture higher moments of the returns time series by using rolling risk metrics and structural 

components as additional features. For example, we computed a feature from the standard deviation

of 6-month rolling Sharpe ratio over the IS/OOS periods.

Our feature extraction methodology relied heavily on the open-source performance analysis library 

Pyfolio (https://www.github.com/quantopian/pyfolio). In total, we constructed 57 individual features 

applied to IS and OOS data separately. For a list of all features and their computation, we refer to the

supplement.

Machine Learning

As we will show below, linear methods did not show high predictability of individual backtest 

performance measures on OOS profitability. We next asked if non-linear regression methods trained 

on the full feature set could do better at predict OOS Sharpe ratio. Towards this goal, we explored a 

number of machine learning techniques, including Random Forest and Gradient Boosting, to predict 

OOS Sharpe. To avoid overfitting, all experiments used a 5-fold cross-validation during 

hyperparameter optimization and a 20% hold-out set to evaluate performance. In addition to training 

our own classifiers, we also utilized the DataRobot platform (https://www.datarobot.com) to test a 

large number of preprocessing, imputation and classifier combinations. 

Consistent with prior literature on the application of machine learning to investing (Martinez et. al 

[2009]; Kearns and Nevmyvaka [2013]), we attempt to measure the performance of our classifier as 

a portfolio selection method. To simulate selection performance, we created an equal-weighted 

portfolio of the top 10 algorithms from the hold-out set based on their predicted OOS Sharpe ratio. 

Since the assets in our simulated portfolio are algorithms that can be backtested with slippage, 

commissions and latency assumptions, we avoid many of the pitfalls that have hindered previous 

studies' simulation efforts. We contrast the resulting portfolio returns to those of random selection 

(Burns [2006]) and selection by highest IS Sharpe ratio.

https://app.datarobot.com/
https://www.github.com/quantopian/pyfolio)


Results

In-sample vs out-of-sample comparison

Our first set of analyses aims to evaluate the degree to which various IS performance metrics 

correlate with the same metric computed over only the OOS period. As metrics like the Sharpe ratio 

are noisy measures themselves (Lo [2002]) we first tested whether correlations hold across IS 

periods. We thus compared the Sharpe ratio from the last year of each algorithm's IS period to that 

of the preceding IS period. Regression analysis revealed a strong and highly significant linear 

relationships (Pearson R² = 0.21; p < 0.0001) which establishes a rough baseline as to the maximum

effect size to expect when comparing performance metrics across IS and OOS periods. 

When comparing IS and OOS periods, we found a weakly negative but highly significant correlation 

between annual returns periods (Pearson R²=0.015; p < 0.001; figure 1a). Contrary, Sharpe ratio IS 

was positively correlated with Sharpe ratio OOS (Pearson R²=0.02; p < 0.0001; figure 1b). 

Interestingly, using only the last backtest year to compute IS Sharpe ratio increased predictability of 

OOS Sharpe ratio suggesting a recency effect (Pearson R²=0.05; p < 0.0001; not shown). Next, 

Sortino ratio IS also showed weak predictability of Sortino ratio OOS (Pearson R²=0.02; p < 0.0001; 

figure 1d). All other IS vs OOS performance metrics were not significant with Pearson R² values 

below 0.005, including information ratio (figure 1c), Calmar ratio (figure 1e), and financial alpha 

(figure 1f). 



Figure 1: Scatter plots of in-sample (IS) vs out-of-sample (OOS) values of (a) annual returns, (b) 

Sharpe ratio, (c) information ratio, (d) Sortino ratio, (e) Calmar ratio, and (f) financial alpha. The line 

indicates the best fitting linear regression with the shaded area showing 5% and 95% confidence 

intervals. None of the performance metrics show a significant correlation between their IS and OOS 

periods.

It is curious to observe a negative correlation between IS and OOS annual returns but a (slightly) 

positive relationship between IS and OOS Sharpe ratio, which has average returns in its nominator. 

We propose this pattern can be explained by two findings (figure 2): (i) a positive correlation between

mean returns and annual volatility (p < 0.001), in line with Kakushadze & Tuchinsky [2015] and 

Kakushadze, Lauprete and Tulchinsky [2015], and, (ii) a significant interaction between annual 

volatility and annual returns on OOS Sharpe ratio (p = 0.009). In other words, IS Sharpe ratio can be

increased either by increasing mean returns or decreasing volatility. It appears that the former is 

more prone to overfitting. This could suggest that some quants in our data set focused on 

maximizing returns while not taking volatility into account.

Figure 2: Scatter-plot of annual volatility (IS) vs mean returns (IS) with interaction gradient of OOS 

Sharpe ratio. The blue line through the origin represents an IS Sharpe ratio of 1. The area above the 

“Sharpe ratio IS = 1”-line represents Sharpe ratios > 1, while the area below Sharpe ratios < 1. As 

can be seen, there is a strong linear relationship between annual volatility and mean returns with an 

interaction of OOS Sharpe ratio. Thus, strategies that increase their Sharpe ratio by taking on 

excessive volatility have worse OOS Sharpe ratio than those that keep volatility low.

Interestingly, tail-ratio (i.e. the ratio between the 95th and 5th percentile of the returns distribution) 

showed a stronger significant correlation with OOS Sharpe ratio than IS Sharpe ratio did (Pearson 

R² = 0.025; p < 0.0001). Moreover, risk metrics that aim to quantify volatility alone like annual 

volatility (Pearson R² = 0.67; p < 0.0001), and maximum drawdown (Pearson R² = 0.34; p < 0.0001) 

had statistically significant correlations between their IS and OOS period.



Figure 3: Scatter plots of in-sample (IS) vs out-of-sample (OOS) values of (a) annual volatility and 

(b) maximum drawdown. The line indicates the best fitting linear regression with the shaded area 

showing 5% and 95% confidence intervals. 

Influence of number of backtests on Sharpe ratio

Several studies have shown that IS Sharpe ratio can be inflated by testing different configurations of 

a strategy (Bailey, Borwein & Lopez de Prado [2014]). As quants can run backtests repeatedly over 

varying time-ranges, we computed the total number of days a strategy was backtested over in the 

course of its development. As this variable is positive and was found to have a very long tail, we log-

transformed it. To quantify the amount of overfitting, we computed Sharpe ratio shortfall (Sharpe ratio

IS - Sharpe ratio OOS). In line with previous theoretical predictions, we confirmed a weak 

(Spearman R²=0.017) but highly significant (p < 0.0001) positive correlation between the logarithm of

the backtest days and Sharpe ratio shortfall (see figure 3). Interestingly, annual volatility IS also 

showed a positive correlation with Sharpe ratio shortfall (R² = 0.02; p < 0.0001) which corroborates 

our previous finding that backtests with higher volatility appear to suffer more from overfitting.



Figure 4: Scatter plots of total backtest days a quant ran for a strategy (in log-scale) vs (a) in-sample

(IS) Sharpe ratio, (b) out-of-sample (OOS) Sharpe ratio, and (c) Sharpe ratio shortfall (i.e. IS Sharpe 

ratio - OOS Sharpe ratio). The line indicates the best fitting linear regression with the shaded area 

showing 5% and 95% confidence intervals. As can be seen, the more backtests a quant ran, the 

higher the IS Sharpe ratio, the lower the OOS Sharpe ratio, and the larger the shortfall.

Turn-over and hedging

In addition, we asked if certain parameters describing the behavior of a trading algorithms influence 

performance. In regards to backtest overfitting, we asked if strategies that made more independent 

bets, as measured by the monthly portfolio percent turnover, would be harder to overfit. A multilinear 

regression of the logarithm of monthly turnover and the logarithm of user backtest days onto Sharpe 

ratio shortfall failed to reject the null-hypothesis for turnover (p=0.074). These results, while 

surprising to us, are in line with Kakushadze and Tulchinsky [2015] and Kakushadze, Lauprete & 

Tulchinsky [2015]. We have also made a surprise discovery of a negative correlation between 

turnover and number of backtest days (Pearson R²=0.04; p < 0.0001) which could indicate that 

strategies with less turnover require more backtesting in order to achieve consistent results.

In addition, we tested whether being hedged or market-neutral would decrease volatility of the 

strategy as market-perturbations would be expected to have a smaller impact on the strategy's 

returns. As many strategies in our sample had a minimum hedge-ratio of 0 (due to being long-only), 

we split strategies into buckets of a min-hedge-ratio < 0.5 and > 0.5 and compared annual volatility 

in these two sets. Indeed, hedged strategies had significantly lower volatility IS (t=5.78; p < 0.0001) 

and OOS (t=4.62; p < 0.0001). 

Machine Learning

Accuracy

Best results were achieved using the DataRobot platform (https://www.datarobot.com) which tests a 

huge number of preprocessing, imputation and classifier combinations. The best performance was 

achieved by an Extra Trees Regressor (Geurts, Ernst, and Wehenkel [2006]) with an average 

cross-validation Pearson R² of 0.18 and a Pearson R² of 0.17 on 20% hold-out data suggesting 

weak overfitting. Unfortunately, results were not always identical across different different folds 

suggesting our data set might still be too small for a confident result.

The most important features as determined by the random forest regressor (Breiman [2001]) can be 

appreciated in figure 5. 

https://app.datarobot.com/


Figure 5: Top 15 most important features for predicting Sharpe ratio OOS as determined by a 

random forest regressor.

Performance of resulting portfolio

While the classical machine learning algorithm evaluation metrics described above suggest 

predictive significance for our non-linear classifier, the practical value of our machine learning 

methodology can only be evaluated by testing its profitability as a portfolio selection instrument. 

Towards this goal, we formed an equal-weighted portfolio out of 10 strategies with the highest 

Sharpe ratios as predicted by the Random Forest regressor on the hold-out set and computed their 

cumulative return (figure 6a) and the resulting Sharpe ratio. In addition, we compare this to 1000 

random portfolios (Burns [2006]) of hold-out strategies and a portfolio formed by selecting strategies 



with the 10 highest IS Sharpe ratios. We find that our ranking by predicted Sharpe portfolio performs 

better than 99% of randomly selected portfolios with a Sharpe ratio of 1.8 compared to the IS Sharpe

ratio selection which proved better than 92.16% of random portfolios with a Sharpe ratio of 0.7 

(figure 6b). Given the above result of weak predictability of IS Sharpe ratio it is surprising that it still 

performs reasonably well in this setting, albeit not at a statistically significant threshold compared to 

the random portfolios. These results do however show significant practical value for non-linear 

classification techniques compared to more traditional, univariate selection mechanisms when 

constructing portfolios of trading algorithms. 

Figure 6: OOS performance of three portfolio selection mechanisms: (i) top 10 highest Sharpe ratios 

as selected by a random forest regressor, (ii) top 10 highest IS Sharpe ratios, and (iii) 1000 random 

selections of 10 algorithms each. a) cumulative OOS returns; b) Sharpe ratios of resulting portfolios.

Discussion

For the first time, to the best of our knowledge, we present empirical data that can be used to 

validate theoretical and anecdotal claims about the ubiquity of backtest overfitting and its impact on 

algorithm selection. This was possible by having access to a unique data set of 888 trading 

algorithms developed and tested by quants on the Quantopian platform. Analysis revealed several 

results relevant to the quantitative finance community at large – practitioners and academics alike. 

Most strikingly, we find very weak correlations between IS and OOS performance in most common 

finance metrics including Sharpe ratio, information ratio, alpha. This result provides strong empirical 

support for the simulations carried out by Bailey et al. [2014]. More specifically, it supports the 

assumptions underlying their simulations without compensatory market forces to be present which 

would induce a negative correlation between IS and OOS Sharpe ratio. It is also interesting to 

compare different performance metrics in their predictability of OOS performance. Highest 



predictability was achieved by using the Sharpe ratio computed over the last IS year. This feature 

was also picked up by the random forest classifier as the most predictive feature. 

Comparing metrics computed over the full range shows that Sharpe and Sortino ratio have the 

highest OOS predictability, while the information ratio, alpha and Calmar ratio did not show 

significant effects. A closer analysis of the specific patterns across several IS and OOS performance 

metrics further revealed an interesting dynamic. While annual returns had a slightly negative 

correlation, Sharpe ratio, with mean returns in the nominator, showed a slightly positive correlation. 

This effect is explained by an interaction of mean returns and volatility on OOS Sharpe ratio. This 

finding is corroborated by a strong positive correlation between volatility and backtest overfitting. 

One potential explanation for this pattern is that quants were maximizing returns (but not Sharpe 

ratio) without considering the risk their strategy was taking on.

It is also interesting to consider performance and risk metrics that do not rely on average returns. 

Specifically, the tail-ratio was more predictive of OOS Sharpe ratio than IS Sharpe ratio itself. Of 

further note, volatility based risk metrics like standard deviation (annual volatility) and maximum 

drawdown hold very stable across IS and OOS periods.

Additionally, we find significant evidence that the more backtests a user ran, the bigger the difference

between IS and OOS performance – a direct indication of the detrimental effect of backtest 

overfitting. This observed relationship is also consistent with Bailey et. al's [2014] prediction that 

increased backtesting of multiple strategy variations (parameter tuning) would increase overfitting. 

Thus, our results further support the notion that backtest overfitting is common and wide-spread. The

observed significant positive relationship between amount of backtesting and Sharpe shortfall (IS 

Sharpe - OOS Sharpe) provides support for a Sharpe ratio penalized by the amount of backtesting 

(e.g. the "deflated Sharpe ratio" by Bailey & Lopez de Prado [2014]). An attempt to calibrate such a 

backtesting penalty based on observed data is a promising direction for future research. 

Together, these sobering results suggest that a reported Sharpe ratio (or related measure) based on 

backtest results alone can not be expected to prevail in future market environments with any 

reasonable confidence. As we discussed above, this insight is gaining traction in the academic 

community (Harvey, Liu, & Zhu [2016]) and first examples exist of strategies being presented with a 

later follow-up of performance since initial publication. A notable performance difference between 

reported and post-published performance is also reported by McClean and Pontiff [2012] as well as 

Qu et al [2015]. These authors, however, attribute this mismatch not to overfitting but to market 

anomalies being arbitraged away after they become widely known. Under the assumptions that most

strategies on Quantopian are not publicly known, this hypothesis is not sufficient to explain our 

results.

While the results described above are relevant by themselves, overall, predictability of OOS 

performance was low (R² < 0.25) suggesting that it is simply not possible to forecast profitability of a 

trading strategy based on its backtest data. However, we show that machine learning together with 

careful feature engineering can predict OOS performance far better than any of the individual 

measures alone. Using these predictions to construct a portfolio of strategies resulted in competitive 



cumulative OOS returns with a Sharpe ratio of 1.2 that is better than most portfolios constructed by 

randomly selecting strategies. While it is difficult to extract an intuition about how the Random Forest

is deriving predictions, we have provided some indication of which features it deems important. It is 

interesting to note that among the most important features are those that quantify higher-order 

moments including skew and tail-behavior of returns (tail-ratio and kurtosis). Together, these results 

suggest that predictive information can indeed be extracted from a backtest, just not in a linear and 

univariate way. It is important to note that we cannot yet claim that this specific selection mechanism 

will work well on future data as the machine learning algorithm might learn to predict which strategy type 

worked well over the specific OOS time-period most of our algorithms were tested on (for a more detailed 

discussion of this point, see the limitations section). However, if these results are reproducible on an 

independent data set or the strategies identified continue to outperform the broad cohort over a much 

longer time frame, it should be of high relevance to quantitative finance professionals who now have a 

more accurate and automatic tool to evaluate the merit of a trading algorithm. As such, we believe our 

work highlights the potential of a data scientific approach to quantitative portfolio construction as an 

alternative to discretionary capital allocation.

Limitations

Despite the robustness of our results, fairly high sample size, and agreement between our findings 

and the previous literature, several limitations could reduce the generality of our insights. Foremost, 

all algorithms were developed by Quantopian users. Demographic analysis of the Quantopian 

community reveals a heterogeneous and international group that range from engineers and 

academics with limited formal quant finance backgrounds to quant professionals with years of 

industry experience. Thus, the question arises whether our results extend to backtests developed 

exclusively by quantitative finance professionals who might employ methods that reduce overfitting 

when developing their trading strategies. We have made no attempt to identify these professionals 

within our data set and, therefore, we can not currently address that question. That said, verbal 

communications with practitioners who report similar patterns to those we have observed provides 

weak anecdotal evidence in favor of our study's representativeness of the professional investment 

industry.

Similarly, as we do not know the logic of the trading algorithms behind each observable backtest, it 

remains an open question how representative our results are of the academic literature describing 

compelling backtest performances of new trading algorithms. There are, however, individual cases 

where an algorithm author decided to share his or her implementation details with the Quantopian 

community. For example, the first winner of the first Quantopian Open trading competition revealed 

an implementation of a long-only mean-reversion algorithm suggested in a previously published 

study (Li & Hoi [2012]). While showing attractive IS performance, the algorithm lost money after 

being deployed with real capital. Limited OOS time as well as subtle implementation differences 

prohibit strong claims about a lack of validity of the research backing this particular strategy. 

However, it does show that our data set contains strategies published in the academic literature.



Another caveat to the generality of our results are the overlapping time periods over which the 

algorithms in our sample were developed and tested. As described above, the IS period for our pool 

covered a period from 2010 through June of 2015, a bull market with relatively little volatility, while 

our OOS period from June 2015 to February 2016 showed a flat-to-bear market with medium-to-high

volatility. Thus, it is possible that the weak correlation between IS and OOS mean returns we 

observe is due to a shifting market regime and that our strategies would have continued to perform 

consistently with their backtests had there been no change in market regime. While we can not rule 

this effect out without access to more data from different market regimes, we have tested whether 

our observed patterns hold when our sample is limited to market-neutral strategies. Theoretically, a 

market-neutral strategy should not be as strongly affected by a change in market-regime. We thus 

selected strategies with a beta between -0.15 and 0.15 and confirmed that our reported results are 

reproduced in this subset. The overlap in time might also limit the generalizability of our ML results 

as the classifier could learn to predict which strategy type worked well over our specific OOS period, 

rather than any future time-period. Accumulating more OOS time should allow us to answer this 

question.

Finally, in this study, we focused primarily on OOS predictability based on backtests alone. However,

many allocators, investors and quantitative hedge fund managers place great emphasis on existing 

OOS data when selecting strategies for deployment. In our experience with allocation decisions, we 

have adopted a requirement of least 6 months of OOS data to give special attention to any 

inconsistencies between IS and OOS performance. Future research will thus place a greater 

emphasis on the prediction of OOS performance based on backtest and OOS data. This could be 

achieved by splitting the existing OOS period in our data set.
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Appendix

Feature Name Description

trading_days number of days days from the algo's first trade to the 

OOS date

sharpe_ratio mean(returns) / std(returns) * sqrt(252)

sharpe_ratio_last_year Sharpe ratio over the last IS year



annret annualized returns

annvol annualized volatility of daily returns

skewness skewness of daily returns distribution

kurtosis kurtosis of daily returns distribution

stability R-squared error of a linear fit to the cumulative log 

returns

beta_spy Correlation between daily returns and daily returns of 

S&P 500 index returns

alpha_spy Annualized returns in excess of returns resulting from 

correlation with the S&P 500 index

information_ratio mean(returns - S&P500 returns) / std(returns - S&P500 

returns)

beta_std Standard deviation of rolling 6 month beta to the S&P 

500

sharpe_std Standard deviation of rolling 6 month Sharpe ratio

sortino_ratio mean(returns) / std(returns[returns < 0])

drawdown_area Annualized area of drawdown periods (bounded by high 

water mark and cumulative returns curve)

max_drawdown Maximum peak to trough drawdown in the cumulative 

returns curve (%)

calmar annualized_returns / max_drawdown

tail_ratio Ratio between the 95th and (absolute) 5th percentile of 

the daily returns distribution.

For example, a tail ratio of 0.25 means that losses are 

four times as bad as profits.



common_sense_ratio tail_ratio(returns) * (1 + annual_return(returns))

total_pos_count Total number of unique names held over the course of 

the sample period

max_pos_held Maximum number of unique positions held in the sample

period

mean_pos_held Mean number of unique positions held in the sample 

period

median_pos_held Median number of unique positions held in the sample 

period

pct_xnor_hedged Percent of trading days the algorithm was in all cash or 

held one short and one long at the close

pct_days_invested Percent of trading days the algorithm held an open 

position at the end of the trading day

median_hedge_ratio median(short exposure / long exposure)

mean_hedge_ratio median(short exposure / long exposure)

max_hedge_ratio max(short exposure / long exposure)

min_hedge_ratio min(short exposure / long exposure)

mean_max_long_pos_concentration  mean(daily largest long position % portfolio allocation) 

median_max_long_pos_concentration  median(daily largest long position % allocation) 

max_max_long_pos_concentration  max(daily largest long position % allocation)

mean_max_short_pos_concentration  mean(daily largest short position % allocation)

median_max_short_pos_concentration median(daily largest short position % allocation)

max_max_short_pos_concentration  max(daily largest short position % allocation)



mean_median_long_pos_concentration   mean(daily median long position % allocation)

mean_median_short_pos_concentration  mean(daily median short position % allocation)

median_pct_std_of_allocations_by_name  median(standard deviation in % allocation for each 

name over sample period)

median_effective_pos_count Median of a measure that estimates the daily number of 

effective positions. In a equally balanced portfolio will be 

equal the number of positions and reduces as the 

portfolio gets more skewed.

min_effective_pos_count Minimum of the daily number of effective positions (see 

above).

mean_monthly_turnover Average monthly turn-over in %

mean_profit_per_winning_trade Mean % returns of all winning trades

median_profit_per_winning_trade Median % returns of all winning trades

min_profit_per_winning_trade Minimum % returns of all winning trades

max_profit_per_winning_trade Maximum % returns of all winning trades

mean_loss_per_losing_trade Mean % returns of all losing trades

median_loss_per_losing_trade Median % returns of all losing trades

min_loss_per_losing_trade Minimum % returns of all losing trades

max_loss_per_losing_trade Maximum % returns of all losing trades

std_of_profit_per_name Standard deviation in total profit generated by all traded 

names

decisions_per_day  Number of “round trips” (purchase/sale and subsequent 

sale/purchase of shares) divided by period trading days

user_backtest_days Total number of days in all the backtests run on the 



algorithm prior to deployment
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